
NLSIM EXAMPLES

The following are NLSIM examples. Examples consist of hardware platform simulation
and software written in MIPS assembly language to exercise that platform.

In these examples, all performance numbers are computed using my Sony laptop model
FXA-36 with an AMD CPU running at 1 GHz.

PLATFORM #1 c:\mips32\generic

This is a generic platform that consists of only the MIPS CPU and memory. A platform
that is compatible with SPIM.

SPIM or SPIM MIPS simulator is a popular MIPS32 simulator written by James Larus. If
you go to www.google.com and enter MIPS simulator, the number one entry is the web
page for SPIM MIPS simulator. Here is a quick feature comparison between NLSIM and
SPIM.

 NLSIM MIPS simulator SPIM MIPS simulator
Simulate MIPS32 instructions yes yes
Simulate MIPS32 CPU yes no
Type of debugging break points Execute

Data read
Data write

Execute

Simulate external hardware yes no
Cache decoded instruction yes yes
Support self-modified code yes yes
Simulate exception yes yes
Simulator external interrupts yes no
Type of address translation Block mapping none
Simulate CPU cache no no
Keep track of execute cycle yes no
Simulate the entire 4 Gigabytes
memory space.

yes no

Other features Give warning on un-
initialized memory read.

Stop simulator on un-
initialized instruction.

?

Performance About 20 mips on 1 Ghz PC About 20 mips on 1 Ghz PC

http://www.google.com/

sort.asm Example #1 Platform #1 directory: c:\mips32\generic

This first example for this platform is to sort 16,384 32-bit integers. This array is
populated with numbers in ascending order counting from 0 to 16383. It then sorted in
descending order. For NLSIM, it takes 52 seconds to sort this array for a total of over one
billion instructions. The performance is roughly 22 mips.

To compile sort.asm, open a DOS window, change directory to

c:\>cd c:\mips32\generic
 c:\mips32\generic>mips_asm sort

To simulate sort, type

 c:\mips32\generic>nlsim sort

To run, within NLSIM, type

 >go

After simulation finishes, in order to get performance figure, type

 >perf

To exit simulation, type

 >quit

Here is the snapshot of the result:

Note that, the simulator starts to execute the first instruction at address 0xbfc0 0000. But
for simplicity, if the source code contains symbol “main” or “bat_dau”, then the
execution starts at this “main” symbol wherever it is.

For SPIM, it takes the same amount of time to execute this program. That means SPIM
execution context is also very efficient.

Playing around with SPIM a bit and figure out that the simulator also supports self-
modifying instruction. However, SPIM does not have any data memory state or execution
memory state. SPIM will decode all instructions within text segment at loading time.
Whenever a location within text segment is modified, SPIM will re-decode instruction
immediately.

NLSIM has all the memory states and does not have to decode instruction ahead of time.
It will decode instruction “on demand”. That is it only decodes instruction that is about to
execute. Writing data to a previously decoded instruction location will not trigger
instruction decoding.

This would lead us to a small example.

self.asm Example #2 Platform #1 directory: c:\mips32\generic

Here is the compiled listing of self.asm, self.lst:

 1 org 0x00040000
 2 bat_dau:
3C020004 00040000 3 lui r2,@pounding
34420030 00040004 4 ori r2,r2,pounding&0xffff ; r2 = addr of
modifying instruction
8C430000 00040008 5 lw r3,0(r2) ; r3 = opcode to modify
3C0400FF 0004000C 6 lui r4,0xff
3484FFFF 00040010 7 ori r4,r4,0xffff ; r4 = loop counter
00A52826 00040014 8 xor r5,r5,r5
 9 loop:
AC430000 00040018 10 sw r3,0(r2) ; modify "self" opcode
2484FFFF 0004001C 11 addiu r4,r4,-1 ; counter--
1485FFFD 00040020 12 bne r4,r5,loop
00000000 00040024 13 nop
 14
 15 stop_here:
00000000 00040028 16 nop
00000000 0004002C 17 nop
 18 pounding:
1485FFF9 00040030 19 bne r4,r5,loop
00000000 00040034 20 nop
 21

You can write similar code with SPIM. Do not declare any data segment. Just use text
segment.

NLSIM in this case runs about 10 times faster than SPIM.

Note: if you run this program with SPIM for a couple times, Windows will run out of
virtual memory.

Here is the snapshot of this program running NLSIM:

benchm.asm Example #3 Platform #1 directory: c:\mips32\generic

benchm.asm is a special assembly language program and requires co-operation with
NLSIM to roughly compute the speed of each instruction.

To run benchm.asm, type:

c:\mips32\generic>nlsim benchm

Within NLSIM, type:

>benchmark

Within NLSIM, you can terminate almost any long operation using Control-C.

Here is the snapshot:

fast.asm Example #4 Platform #1 directory: c:\mips32\generic

The previous benchmark example only tries to mimic execution of a typical instruction. It
turns out that on my laptop each instruction only runs about 14 mips. This is not true as
you notice that the sort.asm program runs about 22 mips.

In this example, I will try to run some simple instructions to show that the simulator can
run even faster. Here is the fast.asm program:

 1 org 0x00040000
 2 main:
1000FFFF 00040000 3 b main
00000000 00040004 4 nop
 5

And here is the snapshot of execution. It runs at 79 mips.

span.asm Example #5 Platform #1 directory: c:\mips32\generic

This span.asm program demonstrates NLSIM ability to run program with large amount of
code and data. The program first copies branch instruction to the beginning of each 64
Kbytes page for a total of one gigabyte. It then executes branch instructions it creates.
That is to jump from page to page. The execution is extremely slow since each branch
generates two page swaps. To cache one gigabyte of data, it requires roughly 1.25
gigabytes of hard disk spaces. You may not be able to execute a similar program with any
other simulator.

exception.asm Example #6 Platform #1 directory: c:\mips32\generic

exception.asm is a program that will execute an unaligned data read instruction. This will
generate an exception. Within the exception handler at address 0xbfc0 0380, this bad
instruction will be skipped. Upon returning from this exception, the next instruction will
be execute normally.

This example demonstrates the ability to generate internal exception by NLSIM.

The following is the snapshot of tracing this program:

This program does not have any “main” symbol. Therefore, it starts to execute at location
0xbfc0 0000. It then jumps to “main1” at address 0x0000 1010. Main1 will generate an
unaligned data read exception using instruction “lw r2,5(r0)” at address 0x0000 1018.
This will get to the exception handler at address 0xbfc0 0380. This handler will retrieve

EPC and increase EPC by one instruction. Upon returning from the exception handler,
execution will resume at the next instruction.

PLATFORM #2 c:\mips32\external_interrupt

ext_int.asm Example #1 Platform #2 directory: c:\mips32\external_interrupt

This is a custom platform that will generate external interrupts. This demonstrates that
NLSIM has the ability to simulate external interrupt. The platform also simulates IO read.

External.c is part of the simulator. And ext_int.asm is the simulated MIPS program.
These two have to co-operate with each other to carry out this simulation environment.

Explain of ext_int.asm:

This program has two IO read locations. “data” IO read location is at address 0x1111
0000. “done” IO read location is at address 0x1112 0000. Both of these locations are
trapped by external simulation logic within the file “external.c”.

Every time the external interrupt number 5 is generated, the interrupt handler “int5” will
read a number from “data” location, and accumulate into a sum within register “r2”. This
process will continue as long as “done” is not 1. Checking for done equals to 1 is done
within the background loop. When “done” is equal to 1, interrupt is disabled, and the
program enters an infinite loop, one of the termination methods.

Explain of external.c.

When simulator finishes loading a MIPS program, phase_for_register_break_point()
function will be called. In this case, the following hardware registrations are created:

 address_struct addr1;
 long long sim_time;
 int i;

 sim_time = 0ll;
 for (i = 0; i < 50; i++) {
 sim_time += 10000000ll;
 register_event (sim_time, gen_interrupt5, (void *) 0);
 }

 addr1.addr = 0x11110000;
 register_word_read_break (addr1, addr1, fetch_data);
 addr1.addr = 0x11120000;
 register_word_read_break (addr1, addr1, fetch_done);
 done = 0;

The first C code section schedules 50 events ahead. Each event is 10 million cycles apart.
When scheduled event cycle is reached, the action function gen_interrupt5() will be
called.

The second C code section registers two IO read breakpoints.

The first IO read breakpoint is at address 0x1111 0000. When MIPS program,
ext_int.asm, reads this location, function fetch_data() will be called. Fetch_data() will
return a value to the simulated program.

The second IO read breakpoint is at address 0x1112 0000. When ext_int.asm reads this
location, function fetch_done() will be called. Fetch_done() will return a value to the
simulated program.

Fetch_done() returns the current “done” value to ext_int.asm. While fetch_data(), returns
the current “current_data” value to ext_int.asm.

void fetch_done (address_struct addr, UINT *data, UCHAR *state)
{
 *data = done;
}

void fetch_data (address_struct addr, UINT *data, UCHAR *state)
{
 *data = current_data;
}

“done” and “current_data” is setup by gen_interrupt5() as followed:

static int num_ints = 50;
static unsigned int data_array [10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
static unsigned int current_data = 0xffffffff;
static unsigned int done;

void gen_interrupt5 (void *data)
{
 static int i = 0;

 current_data = data_array [i++ % 10];
 request_interrupt (5);
 num_ints--;
 if (num_ints == 0) {
 done = 1;
 }
}

Every time gen_interrupt5() is called, “current_data” will be assigned with an value
within “data_array []”. The next time, “current_data” will be assigned with the next value
within “data_array []”.

Every time, gen_interrupt5() is called, interrupt number 5 is requested using function
request_interrupt().

If interrupt is generated, e.g. requested, 50 times, “done” value will be changed from 0 to
1. “ext_int.asm” will detect “done” value of 1 within the background loop, disable
interrupt, and enter an endless loop.

PLATFORM #3 c:\mips32\sort2

sort.asm Example #1 Platform #3 directory: c:\mips32\sort2

This platform will run the same sort.asm program created in c:\mips32\generic. This
platform will trap execution of sort.asm at two execution points, before and after sorting.
For case before sorting, it will populate values within the sorting array. For case after
sorting, it will retrieve the result to verify that the values are actually sorted. The number
of instructions required to sort is also computed.

This technique is extremely useful for automated testing.

PLATFORM #4 c:\mips32\sort3

sort.asm Example #1 Platform #4 directory: c:\mips32\sort3

This platform will run the same sort.asm program created in c:\mips32\generic. This
platform will trap execution of sort.asm at two execution points, before and after sorting,
in order to compute the number of cycles executed.

This platform will not populate data within the simulator memory as platform# 3. Instead,
it sets external IO access for the entire “data” array, forcing sorting values to be fetched
and stored externally. Using this technique, the simulator also can verify the correctness
of the algorithm. In addition, external simulation logic also computes the number of reads
and writes access to the “data” array.

PLATFORM #5 c:\mips32\pc_serial

serial.asm Example #1 Platform #5 directory: c:\mips32\pc_serial

So far all platform and examples are interacted within the simulated environment. This
final example will connect the simulator to an actual hardware, a PC serial port. This
example will only run on Windows DOS environment.

Within DJGPP, there is a function call _bios_serialcom(). This function will interact with
the PC serial port. It allows reading and writing characters to the serial port. Please go to
www.delorie.com for documentation.

In this example, the external simulation logic, external.c, will act as a middleman
between the MIPS assembly language program running within the core simulator and the
PC serial port.

Here is how it was simulated:

_bios_serialcom() has three input arguments and one return value:

http://www.delorie.com/

 serialcom = _bios_serialcom (cmd, port, data);

The MIPS program, serial.asm, will write values into cmd, port, and data. These are IO
write locations. The external simulation logic will remember these values when they are
written. When the MIPS program reads serialcom, an IO read location, the external
simulation logic, external.c, will invoke the _bios_serialcom() function call using
remembered values for cmd, port, and data. It then returns the return value to serialcom.

Here is how it is implemented in external.c

We have four IO locations to register:

 symbol_address ("cmd", &addr1);
 register_word_write_break (addr1, addr1, receive_write_cmd);

 symbol_address ("port", &addr1);
 register_word_write_break (addr1, addr1, receive_write_port);

 symbol_address ("data", &addr1);
 register_word_write_break (addr1, addr1, receive_write_data);

 symbol_address ("serialcom", &addr1);
 register_word_read_break (addr1, addr1, bios_serialcom_value);

And here are their corresponding action functions:

unsigned int cmd, port, data, serialcom;

void bios_serialcom_value (address_struct addr, UINT *data1, UCHAR *state)
{

 if (cmd == _COM_INIT)
 data = data_lookup_table [data];
 *data1 = _bios_serialcom (cmd, port, data);

}

void receive_write_cmd (address_struct addr, UINT data, UCHAR *state)
{

 cmd = cmd_array [data];
}

void receive_write_port (address_struct addr, UINT data, UCHAR *state)
{

 port = data;
}

void receive_write_data (address_struct addr, UINT data1, UCHAR *state)
{

 data = data1;
}

That is it for external.c. With this platform, serial.asm will be able to access the external
PC serial port. Serial.asm will read a string from a character terminal, then convert the all
characters within this string to upper case, and display the converted string. Serial.asm
will not be explained.

The following is the snapshot of the character terminal as it interacts with serial.asm
running within the NLSIM simulator. This terminal is minicom running under Linux on a

separate machine. This machine and the machine that run NLSIM are connected via a
null modem serial cable. Settings for minicom are 9600 bauds, 8 bits, no parity, 1 stop
bit, and local echo is on.

