
HOW NLSIM IS IMPLEMENTED 
 

1) NLSIM DESIGN GOAL 
 
NLSIM was designed to as an experiment to see how fast a full-featured CPU 
simulator/debugger can be implemented. The initial requirements are as followed: 
 

- To simulate a 32-bit CPU with an entire address spaces of 4 gigabytes. 
- To provide execution and data break points for user to debug their 

program. 
- To simulate hardware attached to the CPU including I/O mapped accesses 

and interrupts. 
 

2) OPTIMIZATION TECHNIQUES IN NLSIM 
 

TECHNIQUE #1 
 
In a normal simulation cycle, instruction is fetched, e.g. read from memory, 
decoded to figure out what kind of instruction. Decoded instruction is then 
executed. 
 
The most widely known technique for speeding up instruction simulation is to 
remember what we have executed in an instruction location so that it won’t be 
decoded again the next time the instruction executed. This trick works by the fact 
that instructions are often staying unchanged for a long time. But when instruction 
changes, decoding process has to be triggered again. 
 
In my implementation, each instruction location, e.g. memory location, has a 
memory state variable. Besides other states stored in this variable, related states 
for this case are MEM_STATE_DECODED and MEM_STATE_UNDECODED.  
 
Besides memory array to store instruction code, memory state, there is also an 
array of execution context. Each instruction location has a corresponding 
execution context. Before instruction is decoded, execution context has logic to 
trigger instruction decoding. After instruction is decoded, execution context has 
logic to execute decoded instruction as fast as it can. 
 
In NLSIM, execution context is an array of 32 bytes or 8 32-bit integers. The 
format is followed: 
 
 
 
 
 
 
 



 
Integer #0 Execution_function (void (*) (UINT *)) 

   
   
   
   
   
   

Integer #7 Instruction_address Unsigned int 
 
Figure 1 – General layout of execution context. 
 
The first 32-bit integer within execution context is used to store pointer to 
function that handles instruction execution. 
 
For memory state equals MEM_STATE_UNDECODED, this location has pointer 
to function to decode the instruction located at this location. When execute, 
instruction is decoded. The first 32-bit integer will be modified to contain pointer 
to decoded instruction. Memory state will change to MEM_STATE_DECODED.  
 
For memory state equals MEM_STATE_DECODED, execution will execute 
without decoding phrase. 

 
When reading data at this location, memory state stays unchanged. 
 
When writing data to this instruction location and memory state is 
MEM_STATE_UNDECODED, memory data is written, memory state stays. 
 
When writing data to this instruction location and memory state is 
MEM_STATE_DECODED, memory data is written, memory state changes to 
MEM_STATE_UNDECODED, and the first location of execution context will 
be modified to the function that decodes instruction again. 
 
The last 32-bit integer within execution context stores instruction address, just 
for convenience. 
 
Other locations within execution context can be used to store instruction 
operands, instruction data, next execution pointer, e.g. next execution address. 
There is no compromise on how execution information is represented for each 
kind of instruction. The arrangement is different from instruction to instruction. 
 
Here is the example of the ‘addu’ instruction, 
 
 addu r0, r1, r2 
 
  



 
 

Integer #0 *addu_page_no_change () (void (*) (UINT *)) 
 Index to r0  
 Index to r1  
 Index to r2  
   
   
   

Integer #7 Instruction_address Unsigned int 
 
Figure 2 – Example of execution context for ‘addu’ instruction. 
 
And here is how to invoke the execution: 
 
((void (*) (UINT *)) (*(UINT *) current_execute_handle)) 

((UINT *) current_execute_handle); 

 
current_execute_handle points to the beginning of execution context. 
And here is function implementation: 
 
void addu_page_no_change (UINT *operand) 
{ 
  reg [operand [1]] = reg [operand [2]] + reg [operand [3]]; 
  current_execute_handle = 

(void (*) (UINT *)) ((UINT) current_execute_handle + 8 * sizeof (UINT)); 
} 

 
 

This technique, technique #1, is responsible for a ten-fold increase in 
performance. 

 
TECHNIQUE #2 
 
The last technique and the arrangement of execution context help to produce a 
very tight execution. 
 
((void (*) (UINT *)) (*(UINT *) current_execute_handle)) 

((UINT *) current_execute_handle); 
 

void addu_page_no_change (UINT *operand) 
{ 
  reg [operand [1]] = reg [operand [2]] + reg [operand [3]]; 
  current_execute_handle = 

(void (*) (UINT *)) ((UINT) current_execute_handle + 8 * sizeof (UINT)); 
} 
 

The first statement is within a while loop to execute a specified number of 
instructions. And the second piece of code is a typical function execution. 
 
Let look at the original while loop before technique #2 was introduced. 

 
 



  while (instruction_count < target_instruction_count) { 
    ((void (*) (UINT *)) (*(UINT *) current_execute_handle))  

((UINT *) current_execute_handle); 
    instruction_count++; 
  } 

 

In this loop, execution of instruction is carried out instruction by instruction. Note 
that, adding counter and checking if-statement happen for every instruction cycle. 
 
If we can execute more than one instruction at a time, and still handle things 
correctly, that would be great. The final code as of this release looks like this: 
 
  while (instruction_count + 20 <= target_instruction_count) 
  { 
    ((void (*) (UINT *)) (*(UINT *) current_execute_handle))  

((UINT *) current_execute_handle); 
  - 
  - 
  // execute these statement 20 times 
  - 
  - 

    ((void (*) (UINT *)) (*(UINT *) current_execute_handle))  
((UINT *) current_execute_handle); 

 
    instruction_count += 20; 
  } 
  while (instruction_count < target_instruction_count) { 
    ((void (*) (UINT *)) (*(UINT *) current_execute_handle))  

((UINT *) current_execute_handle); 
    instruction_count++; 
  } 
 

That is on average, on a long run, we reduce the loop overhead by 95 percent. 
This trick, technique #2, improves the performance by about 20 percent. 
 
The catch is that within while loop #1, if something happens and we need to stop 
the simulator in the middle of 20 statements, we have to do something to preserve 
the stopping states. 
 
The solution is to save ‘current_execute_handle’, then assign 
‘current_execute_handle’ to a dummy execution context that does nothing but 
counting number of instructions that should not be executed. 
 
After getting out of the while loop(s), we restore the saved 
‘current_execute_handle’, and adjust executed instruction counter by subtracting 
instruction that should not be executed! 

 
3) TECHNIQUES TO SOLVE OTHER ISSUES IN NLSIM 

 
TECHNIQUE #3 

  
NLSIM uses hard disk space to cache execution context and other data structure 
so that simulation of the entire 32-bit address space is possible. 
 



The 32-bit address space is divided in pages. The upper 16-bit of address space is 
used to select page number. Thus there are a total of 65536 pages. The lower 16-
bit of address space is used as index into a specific page. Thus each page 
represents 64K bytes of memory space. 
 
Page information is defined as C structure as followed: 
 
memory_info page_handle [NUM_PAGE]; 

 
where NUM_PAGE is 65536. 
 
Each page_handle [upper 16 bits of address space] has all the information about a 
page of size 64K bytes. Among other variables, variables that are worth to 
mention include: 
 
UINT page_state;    /* page state */ 
 
This is the state of the page which tells whether the page is in memory, not in 
memory, swapped out to hard disk, not allocated, or illegal to use. 
 
void *memory;     /* memory */ 
 
This is the pointer to 64K bytes of memory space. This space will be allocated 
dynamically when page is loaded into PC memory. 
 
UCHAR (*memory_state) [16384];  /* data memory state */ 
 
This is an array of data memory state for each 32-bit location. Data memory state 
and related state table will be useful for many tasks which include deciding 
whether an instruction is decoded or not, whether a memory location has user data 
access break points or hardware data access break points. Please refer to 
TECHNIQUE #4 for detailed description. 
 
UCHAR (*exec_state) [16384];   /* execution memory state */ 
 
This is the array of execution memory state for each 32-bit execution location. 
Execution memory state and related state tables are useful for setting up execution 
break points. Please refer to TECHNIQUE #4 for detailed description. 
 
UINT (*exec) [131072];    /* execution context */ 
 
This is the array of execution context mentioned previously. There are 16384 
execution locations in a page. Each location has a corresponding execution 
context. Each execution context is 8 32-bit integers. Remember the first integer 
location within each execution context is execution pointer, a pointer to an 
action function that governs the execution engine. Please refer to TECHNIQUE 
#4 for detailed description. 



 
UINT (*exec_save) [16384];   /* saved execution pointer */ 
 
This is the array of saved execution pointer. When execution break point 
function takes place of execution pointer, original execution pointer is stored 
here. Please refer to TECHNIQUE #4 for detailed description. 

 
TECHNIQUE #4 
 
To simulate data break points, we add more states into data memory state 
variable. Remember, each memory location has a corresponding data memory 
state. 
  
To simulate hardware I/O mapped access, we do the same thing, e.g. adding more 
states to data memory state variable. 
 
There is a data memory state variable for each 32-bit memory location. In this 
program, it is stored within the variable page_handle [].memory_state []. 
 
The following is definition of memory states: 
 
The least 3 significant bits, e.g. bit 0 to 2, have the following non-breakpoint 
states: 
 
#define MEM_STATE_CHECK 0 
#define MEM_STATE_BUS_ERROR 1 
#define MEM_STATE_UNALLOC 2 
#define MEM_STATE_UNINIT 3 
#define MEM_STATE_SWAP_OUT 4 
#define MEM_STATE_UNDECODED 5 
#define MEM_STATE_DECODED 6 

 
The next 4 bits, e.g. bit 3 to 6, define states for data and I/O break points: 
 
/* hardware state break, bit 3-4 */ 
#define MEM_STATE_READ_HW 8  
#define MEM_STATE_WRITE_HW 0x10 
 
 
/* user state break, bit 5-6 */ 
#define MEM_STATE_READ_STOP 0x20 
#define MEM_STATE_WRITE_STOP 0x40 
 

For every memory access whether it is 8-bit, 16-bit or 32-bit, accessing function 
we are using is based on the state of the data memory. 
 
For user data break points, e.g. MEM_STATE_READ_STOP or MEM_STATE_WRITE_STOP, after 
fulfilling required access, the simulator will be stopped. A flag is also set to 
indicate the reason for stopping the simulator. 
 
For hardware data break points, e.g. MEM_STATE_READ_HW or MEM_STATE_WRITE_HW, 
callback functions will be called to fulfill access requirement. Callback functions 



are supplied by hardware simulation logic at the time of registering hardware data 
break points. Hardware break point will not cause simulator to stop. It is used to 
simulate hardware external to the CPU. 
 
Believe it or not, none of the four types of breakpoint we describe so far uses any 
if-statement for checking whether the simulator hits any break point or not. All 
are implemented using finite states and finite state machines. 
 
TECHNIQUE #5 
 
To simulate user execution break point and hardware execution break point, the 
following variables for each execution location are used: 
 
exec_state     execution memory state 
exec (0)     execution pointer 
exec_save     saved execution pointer 

 
 execution memory state has the following states: 
 
 #define MEM_EXEC_HW  1 

#define MEM_EXEC_FETCH  2 
#define MEM_EXEC_USER  4 
 

And it has the following meanings: 
 
For MEM_EXEC_HW, every time an instruction at this location is executed, a callback 
function will be called. Callback function is registered by external simulation 
logic by using function register_exec_break(). After this action callback function 
is carried out, the simulator will continue to execute instruction at this current 
location. This type of action is used to simulate hardware external to the CPU. 
 
For MEM_EXEC_USER, every time an instruction at this location is about to be 
executed, the simulator will be stopped. This state is set whenever user issued a 
break_exec command.  
 
For MEM_EXEC_FETCH, when an instruction at this location is executed, instruction 
decoding is performed every time. That is we can not remember decoded 
instruction at this location. This state is set as a result of setting hardware memory 
read break point by external simulation logic using function 
register_word_read_break().  
 
This execution memory state will decide what state functions will be stored 
within execution pointer, e.g. exec (0), and saved execution pointer, e.g. 
exec_save.  
 
Anytime when execution memory state changes, execution pointer will be 
loaded with: 
 



 exec_lookup_exec [execution memory state] 
 
And saved execution pointer will be loaded with: 
 
 exec_lookup_save [execution memory state] 
 
When execution memory state has state MEM_USER_EXEC, the running 
simulator will be stopped by executing execute_user_stop() function. For this 
case, in order to re-start the simulator again, execution pointer will be loaded 
with: 
 
 exec_lookup_dynamic [execution memory state] 
 
That is all! This logic with states and state functions are setup in a way that there 
is no if-statement within execution engine per instruction cycle! 
 
 
 
 
 
 


	TECHNIQUE #1
	This technique, technique #1, is responsible for a ten-fold increase in performance.
	TECHNIQUE #2
	TECHNIQUE #3
	TECHNIQUE #4
	TECHNIQUE #5

